

X

इंटरनेट

Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

"जानने का अधिकार, जीने का अधिकार" Mazdoor Kisan Shakti Sangathan "The Right to Information, The Right to Live"

 $\star \star \star \star \star \star \star \star$

"पुराने को छोड नये के तरफ" Jawaharlal Nehru "Step Out From the Old to the New"

मानक

IS 15499 (2004): Guidelines for Survey of Housing and Building Typology in Cyclone Prone Areas for Assessment of Vulnerability of Regions and Post Cyclone Damage Estimation [CED 57: Cyclone Resistant Structure]

"ज्ञान से एक नये भारत का निर्माण″ Satyanarayan Gangaram Pitroda "Invent a New India Using Knowledge"

RIGHT TO INFORMATION "ज्ञान एक ऐसा खजाना है जो कभी चुराया नहीं जा सकता Bhartrhari-Nītiśatakam "Knowledge is such a treasure which cannot be stolen"

611111111

Made Available By Public. Resource. Org

 $\star \star \star \star \star \star \star$

BLANK PAGE

PROTECTED BY COPYRIGHT

भारतीय मानक

चक्रवात संभावित क्षेत्रों में क्षेत्र की संवेदनशीलता और चक्रवात के पश्चात् क्षतिमूल्यांकन हेतु आवास और भवन टाइपोलाजी के सर्वेक्षण के मार्गदर्शी सिद्धान्त

Indian Standard

GUIDELINES FOR SURVEY OF HOUSING AND BUILDING TYPOLOGY IN CYCLONE PRONE AREAS FOR ASSESSMENT OF VULNERABILITY OF REGIONS AND POST CYCLONE DAMAGE ESTIMATION

ICS 91.120.99

© BIS 2004

BUREAU OF INDIAN STANDARDS MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI 110002

Price Group 7

FOREWORD

This Indian Standard was adopted by the Bureau of Indian Standards, after the draft finalized by the Cyclone Resistant Structures Sectional Committee had been approved by the Civil Engineering Division Council.

Cyclonic storms form far away from the sea coast and gradually reduce in speed as they approach the sea coast. Cyclonic storms generally extend up to about 60 km after striking the coast. Cyclones associated with high speed winds followed by heavy rains and accompanied by surge have been causing untold misery to the populace and wide spread devastation of properties in the coastal belts of India. The frequency of cyclonic storms is more along the East coast as compared to the West coast of India. The coastal regions of Tamil Nadu, Andhra Pradesh, Orissa and West Bengal on the East coast and Gujarat on the West coast are cyclone prone. Damage to houses is most responsible for loss of life and thus the need to have greater emphasis on the safety of houses. Due to this, need has been felt to evolve national standard for design and construction of cyclone resistant structures so as to ensure desirable level of safety. Considering that the existing housing stock needs retrofitting to enhance its cyclonic resistance, this standard lays down the guidelines and proformae for survey of existing houses their typology and carrying out post cyclone damage evaluation in buildings. The information collected will help in compilation of database, which will be very useful for assessment of vulnerability of regions against cyclonic occurrences.

The composition of the Committee responsible for the formulation of this standard is given in Annex B.

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS 2 : 1960 'Rules for rounding off numerical values (*revised*)'. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

Indian Standard

GUIDELINES FOR SURVEY OF HOUSING AND BUILDING TYPOLOGY IN CYCLONE PRONE AREAS FOR ASSESSMENT OF VULNERABILITY OF REGIONS AND POST CYCLONE DAMAGE ESTIMATION

1 SCOPE

This standard covers the guidelines for survey of housing and building typology in cyclone prone areas for assessment of vulnerability of regions and post cyclone damage estimation.

2 BASIC PRINCIPLES FOR SURVEY

2.1 The guidelines and proformae are intended to identify the preparedness and accessibility of the area, establishing building typology along with the weakness in structural schemes, inadequacies in the materials and methods of construction so that an appropriate cost effective scheme of retrofitting may be designed for improved cyclone resistance and thus decreased vulnerability to any future damage. The proformae may also be used for carrying out a post cyclone damage estimation of buildings.

2.2 Different sets of proformae as given at Annex A have been evolved keeping one village as unit. In case of district headquarters or big cities, the same may be divided in distinct zones up to a maximum of five and treating each zone as one unit. The following proformae may be got filled in stand-alone mode or in conjunction depending upon the purposes of survey:

- Proforma I To identify the preparedness of the unit for handling a cyclone disaster and the accessibility of the area for the purpose of relief. It has to be filled for each unit.
- Proforma IIA To obtain statistical information for the purpose of characterization of building typology.
- Proforma IIB To obtain information about structural system employed and various typical member size so that inadequacies of the building can be determined and suitable retrofitting measures designed.

Proforma IIC

To record the extent and nature of damage suffered to buildings only for post cyclone damage survey in a region.

NOTE — Proforma IIA may be used in stand alone mode, whereas Proforma IIA, and Proforma IIB (one for each building) may be filled when it is required to retrofit the buildings for improved cyclone resistance Proforma IIC shall always be filled in conjunction with Proforma IIB.

2.3 Sample Size

It is desired that fairly representative sample size is needed to be taken for establishing the building typology for any unit. It is therefore suggested that a minimum of 10 percent of the total houses/buildings may be surveyed with the following maximum numbers for each category.

Non-engineered	: 50
Semi-engineered	: 25
Engineered	: 10

NOTE — For the purpose of this standard, IS 15498 : 2004 'Guidelines for improving the cyclonic resistance of low rise houses and other buildings/studeses' may be referred to for non-engineered, semi-engineered and engineered construction.

2.4 Educational Background of Surveyors

Keeping in view the technical input required by the person conducting the survey, the following minimum educational background and experience is recommended for the surveyor:

Proforma	Ι	:	Graduation.
Proforma	IIA	:	Graduation/Civil engineering (Diploma).
Proforma	IIB	:	Civil engineering (Diploma).
Proforma	IIC	:	Civil engineering (Diploma) with at least three years of ex- perience/Civil engineering (Degree).

3 GUIDELINES FOR FILLING UP THE PROFORMA

3.1 The aim is not to prepare a detailed plan of an entire unit but to gain information on general layout of

unit, typical building configurations evolved by the society for their housing needs and their vulnerability against cyclones. Plan, structure shapes, structural schemes, materials and methods of construction are important factors considered.

3.2 Proforma I General

For each village as a unit one general data sheet (Proforma I) has to be filled. For cities and towns, the size of the habitat may be large and therefore the delineation of zones has to be decided prior to undertaking the survey and consistent with the requirements of adequate information on building typology. Each zone thus identified shall have one general data sheet. A map of the village zone be procured from local authorities showing important land marks, inhabited area, etc, and appended with the survey record.

The information gathered in this section assesses the cyclone vulnerability of the area and its preparedness to handle the disaster, building environs and the accessibility of the area for providing quick relief.

3.3 Proforma II Building Typology and Structural Assessment

The proforma II is in three parts A, B and C. Proforma IIA covers the statistical information about buildings for the purposes of characterization of building typology. Proforma IIB covers information about structural systems, member sizes and connection details for examining the cyclone resistance of the existing buildings and to retrofit them, if needed, for improved cyclone resistance. Proforma IIC covers the damage survey of the buildings in the post disaster scenario. The questionnaire is so designed that if needed, a back analysis may be carried out to make an estimate of prevailing wind speeds at the time of damage.

The proformae are common fot all building types, namely, non-engineered, semi-engineered and engineered. Buildings to be surveyed should be carefully chosen so that all important building shapes are fully covered.

3.4 Filling Up of Proformae

The proformae contains basically two types of questions. In first case, the multiple options are given and surveyors has to indicate the number of his choice in the box provided, for example

In the other set of questions the answer is to be provided in definite quantitative terms on the basis of actual measurement or otherwise at site like member size, spacing of connections etc, in the box provided.

4 DAMAGE SCALES

4.1 Damage to Roof of Non-engineered and Semiengineered Construction and Walls with Thatch, AC Sheets and Other Sheets

- Marginal A few connections loosened or damaged.
- Medium Roof/Wall cladding in bad condition or blown off partially (< 50 percent), wall posts tilted, and sagging of roof.
- Heavy Roof/Wall cladding blown off with damage to runners, bracings of walls and posts.
- Total Roof/Wall totally damaged.

4.2 Damage to Walls Made of Mud, Reinforced Mud, and Brick/Stone/Cement Concrete Block Masonry

- Marginal Minor cracks in walls, plaster peeled off, moisture penetration noticed on inside wall.
- Medium Large cracks in wall, no tilt, plaster peeled off, wall material weathered at reaction locations.
- Heavy Wall tilted with or without cracks, portion of wall damaged or partial collapse.

Ś.

Total – Failure of the wall.

4.3 Damage to Foundation

- Minor Few settlement cracks below plinth level.
- Medium Large settlement cracks below plinth level, posts titled with gaps noticed in soil, noticeable cracks in tie beams.
- Heavy A portion of foundation fully separated, large tilting/pull out of posts, separation between the beam and pile, pile tilted.
- Total Failure of foundations.

4.4 Damage to Roof of Industrial Structures with AC/Metal Sheet Cladding

- Marginal A few J bolts disturbed/corroded, sheet broken over small area.
- Medium Large number of J bolts disturbed, a few sheets (< 25 percent) blown off, some elements of truss/buildings bent noticeable sagging of roof truss.
- Heavy AC sheets blown off, a few trusses bent/out of alignment, failure of a few joints.
- Total Failure of a few trusses.

4.5 Damage to Columns of Industrial Sheds

Marginal – A few bolts in built up columns are loose/corroded, bed plates between truss and column or foundation and column not fully matched, minor cracks in reinforced concrete columns.

- Medium A few ties/braces in built up columns are corroded, a number of bolts in connection corroded, opening up of meeting surfaces at top and bottom with clearly visible separation, structural cracks in reinforced columns exceeding 0.3 mm crack width, no tilt of column.
- Heavy Column tilted inward or outward, large deformations with elongation of holes in ties/braces, failure of a few braces, excessive cracking in reinforced concrete columns, deformations of anchor bolts.
- *Total* Large tilt or total failure of columns.

4.6 For an overall assessment, the following recommendations are made:

- Marginal If more than 75 percent of the total number of columns have suffered marginal damage or less and maximum damage to an individual column is medium.
- Medium If more than 75 percent of columns have suffered medium damage or less, and the maximum damage to an individual column is heavy.
- Heavy If more than 50 percent of columns have suffered heavy damage and no failure.
- Total If more than 50 percent of the columns have suffered heavy damage, with one or more columns failed.

3

1

2

ANNEX A

(*Clause* 2.2)

PROFORMAE

PROFORMA I GENERAL

Tamil Nadu	Andhra Pradesh	Orrisa	West Bengal	Gujarat	Others
1	2	3	4	5	6
2. Name of district	:				
8. Name of taluk:					
I. Name of village	/unit:				
5. Distance from d		are in km			[
·····		······································	- <u>1</u>		
< 20		≥ 20 but < 40	≥ 40 but <	: 60	≥ 60
1		2	3		4
5. Area, in km ²					
< 10		≥ 10 but < 20	≥ 20 but <	: 30	≥ 30
1		2	3		4
7. Percentage land	use for housing				
< 20		≥ 20 but < 40	≥ 40 but <	: 60	≥ 60
1		2	3		4
8. Number of inha	bitants				
< 100	2	100 but < 200	≥ 200 but «	< 500	≥ 500
1		2	3		4
9. Cyclone prone					
Yes	No	7			
1	2	_			
10. Flood prone		_J			[
		7			L
Yes	No	_			
1	2				
11. Storm surge pr	rone				
Yes	No				
1	2				
12. Average distar	nce from sea, in	km			

3

4

5

13. Is a cyclone shelter available and accessible

Yes	No
1	2

14. Distance of cyclone shelter, in km, from unit

< 2	≥ 2 but < 4	≥4
1	2	3

15. Capacity of cyclone shelter

< 50	≥ 50 but < 100	≥ 100 but < 250	≥ 250
1	2	3	4

16. Other community building available (semi-engineered or better)

Yes	No
1	2

a) School building available (semi-engineered or better)

Yes	No
1	2

b) Panchayat building available (semi-engineered or better)

Yes	No
1	2

c) Primary health centre available (semi-engineered or better)

Yes	No
1	2

17. Alternative means of communications (other than telephone) available

Yes	No
1	2

18. Advanced cyclone warning system in position

Yes	No
1	2

19. Advanced warning time preceding cyclone, in h

Nil	> 0 but < 6	≥ 6 but < 12	≥ 12 but < 24	≥ 24
1	2	3	4	5

20. Storm water drainage available

Yes	No
1	2

IS 15499 : 2004

Year	Speed of Wind kmph	Approximate Duration, h	Houses Damage		Level of Standing Water, m	How Much Advance Cyclone Warning Issued, h
2. Approximate cached in m (see		torm surge level	known to ha	ave		<u>.</u>
3. Total number		S				
< 100	≥ 100 but < 300		300	\geq 300 but < 500		≥ 500
1		2		3		4
 b) Semi-en c) Enginee 5. a) Approach i) Maximu 	red	h, in m		>6 hut - 14		> 10
	< 4)	≥ 10 4
ii) Type of	·	l,,	<u></u>	3		
	Kutcha	W	ВМ	Asphalt		Concrete
	1		2	3		4
b) Interior roi) Maximu	oads within t m road widt					
	< 4	≥ 4 b	out < 6	≥ 6 but < 10	0	≥ 10
	1		2	3		4
ii) Type of	road surface	1		1 ve10	3	
	Kutcha		ВМ	Asphalt	·	Concrete
	1		2	3		4
					-	
Isolated Build		Planned Layou	t C	Closely Spaced	-	
Isolated Build	lings	Planned Layou 2	t C	Closely Spaced	_	
Isolated Build	lings		t C]	
	lings		t C Valley	3		Water logged

28. Size of trees

 None	Small	Large
1	2	3

29. Any other notable tall structures, give description.

NOTES

1 A map of the village surveyed be procured from local authorities and attached with this survey report. Important land marks of the village and inhabited area be demarcated.

2 Data for this item may be obtained from concerned agencies, mentioning its source.

PROFORMA II BUILDING TYPOLOGY AND STRUCTURAL ASSESSMENT A — TYPOLOGY

State:

District:

1. Name of owner/occupant:

Address:

Taluk:

Corner		Edge		Interior				
1		2		3				
a) Height of su	ırge/standi	ng water, in	m					
< 1	≥ 1 t	out < 1.5	≥ 1.5	but < 2	≥ 2 but < 4	F	≥ 4	
1		2	2	3	4		5	
b) Duration fo	r which wa	ter stays, in	h					
< 4		\geq 4 but	< 6	≥6	but < 8		≥ 8	
1		2			4		5	
Number of occup	ants							
1	2		3 - 4	5 - 6	5 7	- 8	> 8	
1	2		3	4 5		5	6	
Area of plot, in n	1 ²							
Area of plot, in n		but < 20	≥ 20 b	out < 40	≥ 40 but <	60	≥ 60	
		but < 20 2		ut < 40 3	≥ 40 but < 4	60	≥ 60 5	
< 10 1	≥ 10					60		
	≥ 10			3		60		

7. Building type

7. Building type						
Non-engineered	Semi-engine	ered	Engin	eered		
1	2	3		3		
8. Estimated age of b	uilding, in years					
< 1	≥ 1 but < 5	≥ 51	but < 10	≥ 10 but	< 25	≥ 25
1	2		3	4		5
9. Plan shape				4		L
Square	Rectangle		L	Tee		Others
1	2		3	4		5
10. Ground slope aro	und the building	•				
Flat	Gentle		Ste	ep		
1	2		3			
11. Height of plinth a	bove ground level, in	m				
< 0.3	≥ 0.3 but < 0.6	≥ 0.6	but < 0.9	≥ 0.9 but	< 1.2	≥ 1.2
1	2		3	4		5
12. Width of veranda	h in front, in m			· · · · · · · · · · · · · · · · · · ·		
Not Available	< 1	≥ 1 but < 2		$\geq 2 \text{ but} < 3$		≥ 3
1	2	3		4		5
13. Width of veranda	h in rear, in m	•		•		
Not Available	< 1	≥ 1	but < 2	≥ 2 but	< 3	≥ 3
1	2		3	4		5
14. Width of courtya	rd sides, in m					
Not Available	< 1	≥ 1	but < 2	≥ 2 but < 3		≥ 3
1	2		3	4		5
15. Percentage of ope	ening in front wall					
< 5	≥ 5 but <	< 10	≥ 1	0 but < 20		≥ 20
1	2			3		4
16. Percentage of ope	ening in rear wall					
< 5	≥ 5 but <	< 10	≥ 1	0 but < 20		≥ 20
1	2	·		3		4
17. Percentage of ope	ening on side wall-1		· · · · ·			
< 5	≥ 5 but <	< 10	≥ 1	0 but < 20		≥ 20
1	2		-	3		4
18. Percentage of ope	ening on side wall-2					
< 5	≥ 5 but <	< 10	≥ 10	0 but < 20	1	≥ 20

 < 5</th>
 \geq 5 but < 10</th>
 \geq 10 but < 20</th>
 \geq 20

 1
 2
 3
 4

19. a) Roof type

19. a	a) Roof type										
	Mono slope		Gable			oed		Flat		I	Rounded
	1		2		3		4				5
ł) Roof mate	erials									
	Jack Arch	Woo	oden Rafters & Bricks		MS Angle/Girder and Stone Patti		RCC		Any other		
	1		2		3		Ι	4			5
20.]	Roof slope										
	Flat	Small	$(\geq 0^\circ \text{ but } < 1)$	5°)	Medi	ium (≥ 1	5°	but < 30°)		Large (≥ 30°)
	1		2			3	}			4	
21.	Roof claddin	g									
	Thatch	Tiles	AC She	et	Mad Terr			RCC	Tiles+I Cement I		Others (Specify)
	1	2	3		4			5	6		7
22.	Height of ea	ves above j	plinth level, in	m							
	< 2		≥ 2 bi	nt < 3		2	: 3	but < 4			≥ 4
	1		2				3			4	
23.	Height of rid	lge of roof	above plinth le	evel, i	n m						
	< 2		≥ 2 bi	ut < 3		\geq 3 but < 4				≥ 4	
	1		2			3				4	
24.	Number of s	storey									
	1		2		2	3 4			≥ 5		
	1		2		3	3 4				5	
25.	Walling mat	terial									
	Mud	Reinfor	ced Mud		Dried icks	Burn Brick		Hollo Concre Block	ete	Stone	Others
	1		2		3	4		5		6	7
26.	Maintenanc	e									
	Nil	0	Only Damage Repaired			d when uired		Regi	ılar		Frequent
	1		2		 ,	3		4			5
27.	Quality of c	onstruction	n								
	Bad		Ave	rage		Good			Very Good		
	1			2				3			4
28.	Estimated c	ost of build	dings in thousa	nd (R	s)						
	< 10	2	$\ge 10 \text{ but} < 50$	T	≥ 50 b	ut < 100		≥ 100 b	ut < 200		≥ 200
	1		2			3		4	ļ		5

NOTE - If there is more than one storey, relevant data of each intermediate floor slab may also be collected separately.

PROFORMA II BUILDING TYPOLOGY AND STRUCTURAL ASSESSMENT **B** — STRUCTURAL AND CONNECTION DETAILS

1. Name of owner:

Address:

Village

Taluk:		District:	State:	
2. Structure detai	ls:			
a) Overall l	ength, in m			
b) Overall b	preadth, in m			
c) Height o	f external walls, in m			
d) Thicknes	ss of external walls, in	n m		
e) Height o	f internal walls, in m			
f) Thicknes	ss of internal walls, in	n m		
g) Number	of storey			
3. Typical plan				
4. Typical section	n			
5. Typical memb	per sizes			Materials used:
a) Ridge be	eam (m × m)			
b) Rafter (r	m×m)			
c) Purlin/B				
d) Beam (n	$n \times m$)			
6. Foundation typ	ре			
Shallow	Deep			
1	2			

7. Depth of foundation, in m ≥ 0.5 but < 1 \geq 1.5 but < 2 \geq 1 but < 1.5 ≥ 2 < 0.5 5 3 4 1 2

8. Plinth protection/apron provided or not

Yes	No
1	2

1

5

9. Foundation material

Mud	Mud (plain)	Stone	Bricks		Sand	RCC
Reinforced with brickbats			Sundried	Burnt		
1	2	3	4	5	6	7

10. Plinth beam provided

Yes	No
1	2

11. Wall plaster inside

Yes	No
1	2

12. Wall plaster outside

Yes	No
1	2

13. Type of plaster

None	Cement	Mud	Lime
1	2	3	4

14. Door/Window frames and shutters

Wood/Wood	Wood/Glass	Aluminium/Glass	Steel/Glass	Others
1	2	3	4	5

15. Ventilators permanently open or closable

Yes	No
1	2

16. Ventilator size, in m^2 ≥ 4 \geq 3 but < 4 Not Available < 2 ≥ 2 but < 3 3 4 2 1

17. a) Roof type

Mono Slope	Gable	Hipped	Flat	Rounded
1	2	3	4	5

b) Roof materials

Jack Arch	Wooden Rafters and Bricks	MS Angle/Girder and Stone Patti	RCC	Any other
1	2	3	4	5

18. Eaves projection, in m

< 0.2	≥ 0.2 but < 0.4	≥ 0.4 but < 0.6	≥ 0.6 but < 0.8	$\geq 0.8 \text{ but} < 1.0$	≥ 1.0
1	2	3	4	5	6

19. Eaves projection held back

Yes	No
1	2

20. Eaves edge restrained using metal straps

Yes	No
1	2

21. Mortar bands on top of roof

Not Provided	Only at Ends	Spacing < 4 m	Spacing $\geq 4 \text{ m}$
1	2	3	4

22. a) Does the building employ purlins or battens

Purlins	Battens
1	2

b) Spacing of purlins/battens, in m

23. Spacing of rafter/trusses, in m

24. Spacing of bolts in middle region, in m

25. Spacing of bolts in edge region, in m

- 26. Type of bolting for sheets
- 27. Size of columns $(m \times m)$
- 28. Column spacing, in m
- 29. Connection of members

Nails	Nails and Binding Wire	Nails and Metal Strap	Binding Wire	Organic Rope	Others
1	2	3	4	5	6

30. Diameter of nails used, in m

< 2	3	4	5	> 6
1	2	3	4	5

NOTE --- If there is more than one storey, relevant data of each intermediate floor slab may also be collected separately.

PROFORMA II BUILDING TYPOLOGY AND STRUCTURAL ASSESSMENT C — DAMAGE DETAILS

1. Name of owner/occupant:

Address:

Village

Taluk:

District:

State:

Damage to roof -

None	Ma	arginal		1	Medium		Heavy		Total
1	1 2			3		4		5	
Damage to from	nt walls					<u> </u>			
None	Ma	arginal		1	Medium		Heavy		Total
1		2			3		4		5
Damage to side	e wall-1							Ľ	
None	Ma	arginal]	Medium		Heavy		Total
1		2			3		4		5
Damage to side	wall-2							[
None	Ma	arginal]	Medium		Heavy		Total
1		2			3		4		5
Damage to rear	wall							· [· · · · · · · · · · · · · · · · · · ·
None	М	arginal			Medium		Heavy		Total
1 2			3 4			5			
Damage to con	npound w	all						[
None	Marginal		Medium			Heavy		Total	
1	1 2			3	<u> </u>	4		5	
Damage to fou	ndation							[
None	M	arginal			Medium		Heavy		Total
1		2			3		4		5
Damage to col a) Total nur b) Number	nber of c			damag	e levels			[
No	one	ľ	Aargina	վ	Medium		Hea	vy	Total
c) Overall a		u of do							
						<u> </u>		، 	
	None Marginal			Medium 3		Heavy 4		Total 5	
L	1								
0. Damage to in	iternal wa	lls		.					
Collapsed Most Collapsed Few C		Cr	acked Most	1	Cracked F	ew	None		
Collapsed Most		2			3		4		5

12. Crack orientation (please $\sqrt{}$) [see Note 1]

Vertical	Horizontal	Inclined	Stepped	Composite

	Top of Doo	or Opening		op of Window Top Edge Opening		Horizontal	Vertical	
	Middle	Edge	Middle	Edges	Middle	Edges	Cracks at Bottom Edge	Cracks Around Corner Edges
Front Wall								
Rear Wall								
Left Side Wall								
Right Side Wall								

13. Damage to doors

Yes	No
1	2

14. Damage to windows/ventilators

Yes	No
1	2

15. Erosion of wall due to flooding/storm surge

Yes	No
1	2

16. Height of wall damaged due to erosion, in m

< 0.5	$\geq 0.5 \text{ but} < 0.75$	≥ 0.75 but < 1.0	≥ 1 but < 1.5	≥ 1.5
1	2	3	4	5

17. Extent of damage, in percent of wall area

< 10	≥ 10 but < 20	≥ 20 but < 30	≥ 30 but < 40	≥ 40
1	2	3	4	5

18. Plinth protection/apron against flooding

Yes	No
t	2

19. Damage to eaves region

Yes	No
1	2

20. Damage to roof cladding, in percent

< 10	≥ 10 but < 20	≥ 20 but < 40	\geq 40 but < 60	≥ 60
1	2	3	4	5

21. Damage to truss/members (please $\sqrt{}$)

Complete	Purlins	Battens	Rafters	Tie Members	None

22. Damage to intermediate floor slab for more than one storey buildings

Yes	No
1	2

23. Damage due to falling of trees

Yes	No
1	2

24. Size of trees in immediate vicinity

None	Small	Large	
1	2	3	

25. Distance of trees from buildings, in m

< 1	≥ 1 but < 2	≥ 2 but < 3	\geq 3 but < 4	≥ 4
1	2	3	4	5

26. Lifting of roof/failure of roof anchorage in walls/columns

Yes	No	
1	2	

NOTES

1 The typical cracks observed may be marked in plan/elevations or else a separate sketch may be made.

2 If there is more than one storey, relevant data of each intermediate floor slab may also be collected separately.

ANNEX B

(*Foreword*)

COMMITTEE COMPOSITION

Cyclone Resistant Structures Sectional Committee, CED 57

Organization

In personal capacity (61, Civil Lines, Roorkee-247667) Adlakha & Associates, New Delhi

Andaman Public Works Department, Port Blair

Building Materials & Technology Promotion Council, New Delhi

Central Building Research Institute, Roorkee

Central Public Works Department, New Delhi

College of Engineering, GITAM, Visakhapatnam

Director of Town & Country Planning, Chennai

Engineer-in-Chief's Branch, New Delhi

Housing & Urban Development Corporation Ltd, New Delhi

Indian Institute of Science, Bangalore Indian Institute of Technology, Roorkee

Indian Institute of Technology, New Delhi

Indian Institute of Technology, Chennai

Indian Meteorology Department, New Delhi

Irrigation & CAD Department, Hyderabad

Jadavpur University, Kolkata

Larsen & Toubro Limited, Chennai

Ministry of Agriculture, New Delhi

Public Works Department, Bhubaneswar Structural Engineering Research Centre, Chennai

Structwell Designers & Consultants Pvt Ltd, Mumbai In personal capacity (*B XI /8091 Vasant Kunj, New Delhi-110070*) BIS Directorate General

Representative(s)

DR PREM KRISHNA (Chairman) SHRI PRAMOD ADLAKHA SHRI NARENDER KAPUR (Alternate) SHRI S. P. LALLA SHRI B. N. NAGARAJA (Alternate) SHRI T. N. GUPTA SHRI J. K. PRASAD (Alternate) SHRI B. S. GUPTA SHRI AJAY CHAURASIA (Alternate) CHIEF ENGINEER (D) SUPERINTENDING ENGINEER (D) (Alternate) DR S. SURYA RAO DR K. V. G. D. BALAJI (Alternate) SHRI R. ANBHAZAJAN SHRI S. VENKATACHALAM (Alternate) LT-COL S. K. SHARMA SHRI R. DAMODARAN (Alternate) CHAIRMAN-CUM-MANAGING DIRECTOR SHRI MALAY CHATTERJEE (Alternate) PROF S. P. GOVINDA RAJU DR S. K. KAUSHIK DR N. M. BHANDARI (Alternate) PROF T. K. DATTA DR A. K. JAIN (Alternate) PROF M. R. PRANESH PROF C. P. VENDHAN (Alternate) SHRI A. V. R. K. RAO SHRI S. C. GOYAL (Alternate) CHIEF ENGINEER (CDO) CHIEF ENGINEER (MAJ IRRIGATION) (Alternate) DR BRATISH SENGUPTA DR SOMNATH GHOSH (Alternate) SHRI P. R. VARADARAJULU SHRIT. V. B. S. SATYANARAYANAMURTHY (Alternate) SHRI BABU JACOB MS JANAK JUNEJA (Alternate) **ENGINEER-IN-CHIEF** DR N. LAKSHMANAN SHRI S. GOMATHINAYAGAM (Alternate) SHRI R. N. RAIKAR SHRI O. P. GOEL SHRI S. K. JAIN, Director and Head, (CED) [Representing Director General (Ex-officio)]

Member Secretary SHRI ALOK KESARI Deputy Director (CED), BIS

Bureau of Indian Standards

BIS is a statutory institution established under the *Bureau of Indian Standards Act*, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of 'BIS Catalogue' and 'Standards: Monthly Additions'.

This Indian Standard has been developed from Doc : No. CED 57 (5573).

Amendments Issued Since Publication

Amend No.		Date of Issue	Text Affected
		BUREAU OF INDIAN STANDARDS	
Headquar	ters :		
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110 002 Telephones : 2323 0131, 2323 33 75, 2323 9402			Telegrams : Manaksanstha (Common to all offices)
Regional	Offices :		Telephone
Central	: Manak Bhavan, 9 Bah NEW DELHI 110 002		{2323 7617 2323 3841
Eastern	: 1/14 C.I.T. Scheme V KOLKATA 700 054	II M, V. I. P. Road, Kankurgachi	{2337 8499, 2337 8561 2337 8626, 2337 9120
Northern	: SCO 335-336, Sector	34-A, CHANDIGARH 160 022	$\begin{cases} 60 \ 3843 \\ 60 \ 9285 \end{cases}$
Southern	: C.I.T. Campus, IV Cr	oss Road, CHENNAI 600 113	{2254 1216, 2254 1442 2254 2519, 2254 2315
Western	: Manakalaya, E9 MID MUMBAI 400 093	C, Marol, Andheri (East)	2832 9295, 2832 7858 2832 7891, 2832 7892
Branches		GALORE. BHOPAL. BHUBANESHWA	

NALAGARH. PATNA. PUNE. RAJKOT. THIRUVANANTHAPURAM. VISAKHAPATNAM.